
Ising model at an edge: a position space renormalisation group approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 1691

(http://iopscience.iop.org/0305-4470/19/9/039)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 17:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 1691-1700. Printed in Great Britain 

Ising model at an edge: a position space renormalisation 
group approach 

Thomas A Larsson 
Department of Theoretical Physics, Royal Institute of Technology, S-100 44 Stockholm, 
Sweden 

Received 31 July 1985, in final form 26 September 1985 

Abstract. The critical behaviour of a three-dimensional Ising model, bounded by two plane 
surfaces meeting at an angle a, is studied using the Migdal-Kadanoff and two-terminal 
cluster renormalisation methods. We obtain expressions for the edge fixed point and for 
the independent edge exponent y,, at the various transitions. We find that y,, is not 
completely universal but depends on the angle a, and that it shows some unexpected 
features. 

1. Introduction 

The Ising model with a free surface has been extensively studied, both with field- 
theoretic methods and with several renormalisation group ( RG) methods in position 
space. A recent review on this subject is given by Binder (1983). Also the Migdal- 
Kadanoff RG (MKRG, Migdal 1975, Kadanoff 1976) has been successfully applied to 
this problem (Lipowsky and Wagner 198 l),  providing a qualitatively correct picture 
although the numerical estimates of fixed points and critical exponents are not very 
reliable. In more than two dimensions four different types of phase transitions can 
occur on the surface: the ordinary, the surface, the extraordinary and the multicritical 
special transitions. In two dimensions only the bulk-driven ordinary transition can 
take place, since the surface is one dimensional in this case. 

Recently, Cardy (1983) considered the critical behaviour in the vicinity of a free 
edge, where two planar surfaces intersect. Edge critical exponents, which describe 
how quantities close to the edge diverge when the system approaches one of its critical 
points, are related through scaling laws to bulk and surface critical exponents, as well 
as to one new edge magnetic scaling power, Yhe. This exponent depends on the edge 
interaction and magnetic fields, in addition to bulk and surface quantities. 

The purpose of this paper is to present results on edge critical behaviour obtained 
using position space RG methods. It is organised in the following fashion: in 8 2 we 
write down the model and in 0 3 the RG calculations are outlined. We apply both the 
MKRG and a two-terminal cluster (rrc) RG developed by Tsallis and Levy (1981). The 
fourth section contains our results. It turns out that a thermal-like perturbation close 
to the edge is irrelevant, which is natural since the edge is effectively one dimensional. 
However, as mentioned previously, an edge magnetic field is relevant in almost all 
cases. When the surface undergoes an ordinary or special transition, the edge exponents 
are not completely universal, but they depend on the angle a between the two planes 
which define the edge. This is not the case at the surface and extraordinary transitions, 
however. Our calculations revealed two unexpected features. Firstly, for a < a* = 53" 
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at the ordinary transition, the edge fixed point disappears while the edge exponent 
becomes negative, indicating that a magnetic perturbation close to the edge no longer 
changes the critical behaviour. Secondly, we find that the edge fixed point diverges 
when a > a** = 297", and the surface-bulk system undergoes a special transition. This 
implies that the edge transition is first order, at least within the MKRG and ~ C R G  

approximations. 
Finally, the last section contains our conclusions. 

2. Model 

Consider an Ising model on a three-dimensional lattice. In one direction, denoted by 
z, its extension is infinite, while the spins in the remaining two directions are restricted 
to lie in the region 0 < 4 < a, where 4 is the polar angle and 0 < a < 2 5 ~ .  For a = ~ / 2 ,  5~ 

or 35~12, we take the lattice to be simple cubic, while for angles that are multiples of 
5~/3 we assume a hexagonal lattice. In particular, when a = T, we have two different 
types of lattice, which might yield different results. 

The Hamiltonian, in units of k,T, is given by 
H [ s l l  = B(s# ,  s J )  (2.1) 

( '1) 

where 

KbS#sJ + hb(Sz + ' I ) /  'bb s,, E A -  A, 
KbSnsj + hbSJ/Zbb s, E A5 sJ E A -  A5 
K S s l s J + h S ( s t + s J ) / z 5 S  st, 3 E A5- Ae (2.2) 
K5s1s] + h5s]/zS5 st E Ae S ~ E A , - A ,  
Kestsj + h e ( s t  + s j ) / z e e  st, SJ E A e  

(G) indicates the sum over nearest-neighbour pairs, he is the set of edge sites, A, is the 
set of surface sites (including A,) and A contains all sites. The K and h are nearest- 
neighbour coupling constants and magnetic fields, respectively, and subscripts b, s and 
e refer to bulk, surface and edge quantities. In the following we will often denote 
these indices collectively with the label p, and we will also suppress the subscript b 
for bulk quantities, when this can be done unambiguously. We have chosen to split 
up each one-spin interaction on the links that connect the site with its nearest neighbours 
of the same type. Here Zbb is the number of bulk nearest neighbours to a particular 
bulk spin, and z,, and z,, are the corresponding surface and edge numbers. In addition, 
we introduce zbs,  the number of bulk neighbours to a surface site, and Zbe and z,, 
analogously. For the cubic lattice, Zbb = 6 ,  z,, = 4, z,, = 2, Zb, = 1 ,  z,, = 2, Zbe = 
(2a /  5~ - l ) ,  while in the hexagonal case, Zbb = 8, z,, = 4, z,, = 2, Zb, = 2, z,, = 2, Zb, = 
( 3 ~ 1 5 ~  - 1). 

In principle, in addition to the interactions considered here, we could also have 
allowed for different coupling constants and fields some distance away from the 
boundary, or perpendicular to it, but it turns out that these renormalise to the same 
fixed point as the bulk K and h, at least when we apply the MKRG. Hence they 
represent irrelevant perturbations which can be ignored from the outset. 

3. Renormalisation group methods 

3.1. Migdal- Kadanof  RG 

We now apply the MKRG to the model above. This scheme consists of two steps: first 
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a fraction of _the bonds connecting the lattice sites are moved to produce a new 
Hamiltonian H, and then an exact renormalisation transformation is performed on the 
bond-moved model. fi is defined on a decorated lattice A, which is isomorphic to the 
original lattice A, but with a lattice spacing that is b times larger. Each bond K,  that 
does not belong to the decorated lattice is moved, perpendicular to itself, to the closest 
link in A. If there are several links in A at the same distance from K , ,  we divide the 
increased strength equally between these bonds. Although there is no U priori reason 
for this choice, it appears to us to be the most natural one, and it reproduces the 
recursion relations of Lipowsky and Wagner in the infinitesimal rescaling limit. T h ~ s  
every link in A is decorated with b - 1 spins, connected by enhanced interactions K , .  
This procedure is illustrated in figure 1, where bonds parallel to the z axis are moved 

R 

k 
l a )  l b )  

Figure 1. Illustration of the MKRG procedure on a cubic lattice, close to an edge with 
(I = 90". The rescaling factor is 3. In the first step, ( a ) +  ( b ) ,  bonds parallel to the z axis 
(perpendicular to the plane of the page) are moved to the closest link in the decorated 
lattice. Surface and bulk bonds also get contributions from adjacent cells. The second 
step ( b )  + ( c )  consists of exact decimation on the bond-moved lattice. 

in the xy plane. We find 

k = b2K ( 3 . 1 ~ )  

k,= bK,+ ( b  - l )bK/2.  (3.lb) 

Bond-moving could only be applied to lattices where a is a multiple of 77/3 (hexagonal) 
or 7r/2 (cubic). In both cases, the decorated edge interaction is given by 

IZe = K ,  + ( b - 1) K ,  + ( b  - 1 )[ ( b  + 1 ) a / 2 7 ~  - $1 K.  ( 3 . 1 ~ )  

We propose to use this formula for arbitrary a, although its validity is questionable 
expecially for a close to 0 or 27r. Note that for a = T, and K,  = K,, ks from (3.lb) 
and k, from ( 3 . 1 ~ )  agree, as they have to do. It is also remarkable that the bond-moving 
procedure yields the same result for both types of lattice. It is a well known artefact 
of the MKRG for the bulk that it does not distinguish between different types of lattice, 
and obviously this misfeature extends to surface and edge interactions. 

The next step in the MKRG is a dedecoration transformation, in which a partial 
trace is performed over the b - 1 spins that decorate each link of A. This is easily 
accomplished, yielding 

tanh KL = (tanh kP)* p = b, s, e. (3.2) 

In the infinitesimal rescaling limit, b = 1 + 6A, we obtain the following differential 
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recursion relations: 

dK,/dA = E,+ 4(KP)/2 

where 

4 ( K , )  = sinh(2KP) ln(tanh K,)  

and 

K = 2 K  

K, = K,+  K / 2  

(3.3) 

(3.4) 

( 3 . 5 ~ )  

(3.56) 

K e =  K , + ( a / r - ; ) K .  (3.5c) 

Note that for K = K ,  = 0, the recursion relation for K ,  reduces to the MKRG equation 
for the bulk in one dimension. As usual, the fixed points of (3.3)-(3.5), which we 
denote by K ; ,  correspond to the critical temperatures, and the thermal scaling power 
is defined by 

(3.6) 

As indicated in (2.2), the magnetic field h, at one particular site is divided equally 
between the zpp bonds of type p that emerge from that site. The resulting interaction 
terms, (hp/ zpp)(s, + s l ) ,  of the Hamiltonian are moved along with the nearest-neighbour 
interaction. For an infinitesimal rescaling this procedure yields to first order in the 
magnetic fields: 

ah /dA = K- +(K)h  ( 3 . 7 ~ )  

ah,/aA = ( K , - ~ ( K ~ ) ~ , ) + ( K -  4(K)h)zbs/xbb (3.76) 

ahelah = (&e - 4 ( Ke)he) + ( K s  - 4 ( Ks1hs)zs.J zss 

+ ( K -  4 ( K  h)Zbe/  Zbb (3.7c) 
where 

6 = 2 h  ( 3 . 8 ~ )  

is = h,+ h/2 (3.8b) 

Le = h,+ ( a / r  - i )h .  ( 3 . 8 ~ )  

The magnetic eigenvalue y,, is obtained in the usual fashion, by differentiating 
ah,/aA with respect to h, at the fixed point. In particular, because K e  and Ke do not 
depend on K ,  in three dimensions, we can obtain a very simple expression for Yhe 

y,, = -4( K , * )  = 2[ K $  + (a/ 7~ - ; ) K * ]  (3.9) 
valid provided K,* is finite. 

3.2. Two-terminal cluster RG 

In order to test some of the results obtained with the MKRG, we also applied an 
altemative position space RG recipe, namely the two-terminal cluster ( n c )  approxima- 
tion with rescaling factor b = 2. For the hexagonal lattice, the cluster for the renor- 
malised interaction K '  is shown in figure 2(a), where the spins s,, s2 and s3 are traced 
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l b l  

Figure 2. ( a )  rrc cell used to renormalise bulk bonds on a hexagonal lattice. The three 
internal spins are traced over using the 'break-collapse' method. ( b )  Combination of cells 
used to renormalise the surface interaction. (c) Combination of cells used to renormalise 
the edge interaction when CI =60". For other values of the opening angle, differently 
weighted averages are appropriate. - indicates a bulk coupling, - a surface coupling, 
- - -  an edge coupling and . . . . . indicates the absence of an interaction. On a cubic lattice, 
we instead use cells with four internal spins. 

over. There is a problem connected with the fact that the links in the triangular-lattice 
planes (the horizontal links) are not equivalent to the (vertical) links which connect 
these planes. We do not know of any a priori reasons for these two types of coupling 
constants to renormalise to the same value. On the other hand, it is difficult to find a 
proper renormalisation prescription for the horizontal interactions. The results 
obtained by equalising them to their vertical counterparts appear to be sensible, and 
therefore we do so. To renormalise the surface and edge interactions, we take weighted 
averages over the different possible clusters, as indicated in figures 2 ( b )  and (c). The 
decimation was carried out using the break-collapse method (Tsallis and Levy 1981), 
which easily yields recursion relations for the K,. The cubic lattice was analogously 
renormalised using clusters with four internal spins instead of three. In this case no 
problem about how to renormalise the horizontal interactions arises, since they are 
completely equivalent to the vertical ones. For bulk and surface couplings on the 
cubic lattice, our equations are identical to those of Lam and Zhang (1983). The 
recursion relation for the edge on a hexagonal lattice is given in the appendix. 

There is no obvious way to handle symmetry-breaking fields with the break-collapse 
method. Since we are mainly interested in checking our MKRG results, we limit ourselves 
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to a calculation of the various fixed points and the associated thermal eigenvalues, 
and we do not determine the magnetic scaling powers. 

4. Fixed points and exponents 

We now consider the fixed points K g  of the MKRG equations (3.3)-(3.5). As is well 
known, there is one non-trivial fixed point of the bulk equation, and we found 
K *  =0.1398 (hex: 0.24, cub: 0.18), with the associated thermal scaling power y,= 
0.9482 (hex: 1 . 1 1 ,  cub: 1.17). Here and henceforth results obtained with the ~ T C R G  

are presented within parentheses, and 'hex' and 'cub' refer to hexagonal and simple 
cubic lattices respectively. Only one MKRG result is quoted, because both types of 
lattice yield the same recursion relations, as discussed above. At the above value of 
K ,  the surface relation, (3.3) + (3.4) + (3 .5b) ,  has two finite fixed points, KZ = 0.0266 
(hex: 0.049, cub: 0.047) and K $  = 0.3394 (hex: 0.47, cub: 0.35), which correspond to 
the ordinary and special fixed points, respectively. We found the scaling power 
connected with the surface interaction to be y,, = -1.6331 (hex: -1.91, cub: -1.85) at 
the ordinary fixed point and y,,=O.6143 (hex: 0.56, cub: 0.71) at the special point. 
The surface transition is governed by the fixed point at K *  = 0, K $  = 0.4407 (hex : 0.65, 
cub : 0.44), with associated eigenvalue y,, = 0.7535 (hex : 0.52, cub : 0.87). Finally, the 
extraordinary transition corresponds to K *  = 0.1398, K d  = CO. 

The edge critical exponents are connected through scaling laws to the bulk and 
surface exponents, and to one new independent edge exponent, yhe. These scaling 
laws were derived by Cardy (1983), so it is not necessary to repeat them here. The 
recursion relation for the edge interaction, (3.3) + (3.4) + ( ~ S C ) ,  has only one fixed 
point in three dimensions, governing bulk- and surface-driven edge transitions. There- 
fore, the various edge transitions can be uniquely labelled by the corresponding surface 
fixed point. For the remainder of this paper7 we will adopt this convention. 

In figure 3 we show the edge fixed point KT as a function of the angle CY at the 
ordinary transition. A fixed point only exists for CY > CY* = 53". Below CY*, K,* becomes 
imaginary, which of course does not make sense. However, the magnitude of KZ 
remains very small all the way down to CY = 0", wherefore it is not unreasonable to 

0.10- 

* U  

4 

2 0.05- 
r c 

I I 
90 180 270 36 f 

U 

Figure 3. Edge fixed point at the ordinary transition. Solid line, MKRG; triangles, rrc RG 
for hexagonal lattice; squares, rrc RG for cubic lattice. 
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suspect that KT = 0 for all a < a*. We should also remember that our bond-moving 
procedure was originally constructed only for angles greater than 60°, and perhaps it 
should not be trusted for smaller angles. The corresponding magnetic scaling power 
is plotted as the lower curve of figure 5.  If we nevertheless take (3.9) seriously, it 
yields an increasingly irrelevant Yhe in the region a < a*. This means that a magnetic 
perturbation close to the edge does not change the critical behaviour of the edge for 
these values of a. Still, Cardy's scaling laws will continue to hold, and quantities like 
the edge magnetisation will have singularities with positive exponents. For comparison, 
the fixed points obtained with the TTC RG are also shown in figure 3. Apparently, this 
method suggests approximately the same value for a*. 

K,* and y h e  at the special transition are plotted in figures 4 and 5 ,  respectively. 
Here another unexpected feature emerges. For a > a** = 297", the edge fixed point 
diverges and the edge scaling power is identically equal to one for all these angles. 
Because Yhe equals the dimensionality of the edge, the Nienhuis-Nauenberg (1975) 
criterion states that the transition should be first order. This is quite remarkable. If 
the special point is approached from the totally disordered phase, the edge magnetisa- 
tion jumps to a non-zero value although both bulk and surface magnetisations remain 
zero. Also the TTC RG gave a diverging fixed point at a = 300". 

The estimates for the fixed points are generally higher from the TTC RG than those 
obtained with the MKRG, in particular for the hexagonal lattice. If we extrapolate the 
triangle-shaped marks in figure 4 to tanh K ,  = 1, this appears to happen at an angle 

1.0 
1 

I I 

90 180 270 $* 3L 

a 

Figure 4. Edge fixed point at the special transition. Solid line, MKRG; triangles, TTC RG 
for hexagonal lattice; Squares, TTC RG for cubic lattice. 

U 

Figure 5. Edge magnetic scaling power from the MKRG at the A, special and B, ordinary 
transitions. 
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smaller than 297". However, since Cardy showed that the magnetic scaling power is 
a universal function which only depends on a, a** must be a universal number, too. 
On a cubic lattic, both methods give comparable estimates for a**. This discrepancy 
may indicate that the identification of horizontal and vertical bonds in 9 3.2 was not 
correct for the hexagonal lattice. 

At the surface transition, where the bulk fixed point vanishes, the MKRG yields an 
edge fixed point which is independent of the opening angle, while the TTCRG does 
give a weak dependence on a. The MKRG has captured an exact property here, because 
the two surfaces decouple from the bulk when the bulk coupling constant vanishes. 
The edge is then equivalent to a special row in a two-dimensional bulk Ising model, 
although the lattice is bent at this row. Correspondingly, critical exponents and fixed 
points should take on the values of a defect row in a 2~ Ising model, irrespective of 
a. Actually, the MKRG does reproduce the exact Onsager value K T = ln(1 +a) on 
the cubic lattice. Notice also that the relations y,, = yte + 1 and yhs+ 1 are fulfilled in 
table 1, meaning that quantities have the same singularities both on the surface and 
on the edge. That this has to be the case should be obvious. 

Finally, at the extraordinary transition, K,* =CO and y,, = 1, which is exact. The 
fixed points and the KG eigenvalue exponents at the different transitions are zkmmarised 
in tables 1 and 2 and figures 3-5. 

Table 1. Fixed points and RG eigenvalues obtained with the MKRG. Quantities denoted 
by - are a dependent. 

Ordinary Special 

K *  
K d  
KT 
Yl 

Yl, 

YI, 

Yh 

Yhs  

Y h s  

0.1398 
0.0266 

0.9482 
-1.6331 

2.5591 
1.1930 

- 

- 

0.1398 
0.3394 

0.9482 
0.6143 

2.5591 
1.8185 

- 

- 

Surface 

0 
0.4407 
0.4407 

0.7535 
-0.2465 

2 
1.8814 
0.8814 

-a2 

Extraordinary 

0.1398 
a2 

a2 

0.9482 
-cc 
-a2 

2.5591 
2 
1 

Table 2. Comparison of KT obtained for different angles a from MKRG and TTC RG. 

Ordinary Special Surface 

a MKRG TTC RG MKRG TTC RG M K R G  1TC RG 

60" 0.42 x 1.83X IO-' 0.178 0.227 0.441 0.453 
120" 11.1 22.5 0.243 0.332 0.441 0.650 
180" (hex) 26.6 49.4 0.339 0.476 0.441 0.650 
240" 46.6 81.0 0.512 1.66 0.441 0.650 
300" 71.7 119 a2 CO 0.441 0.453 
90" 5.02 11.7 0.208 0.230 0.441 0.343 
180" (cub) 26.6 46.5 0.339 0.350 0.441 0.441 
270" 58.4 88.2 0.696 0.647 0.441 0.461 
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5. Conclusions 

We have calculated fixed points and scaling powers within the Migdal-Kadanoff and 
two-terminal cluster approximations. For bulk and surface quantities, our results agree 
with those of Lipowsky and Wagner (1981) and Lam and Zhang (1983). Results for 
the edge quantities are new. The values of K,* and )$-,e depend on the opening angle 
a when the surface is at its ordinary or special fixed points, but not at the surface and 
extraordinary points. Two peculiarities arose: the edge fixed point disappears for 
a <a* at the ordinary transition, which we interpreted as the disappearance of 
independent edge behaviour, and KZ diverges when a > a** at the special transition. 
For these values of a, the edge magnetic scaling power is identically equal to one, and 
the otherwise irrelevant thermal exponent yte becomes marginal. According to the 
Nienhuis-Nauenberg criterion, this means that the edge magnetisation undergoes a 
first-order transition, although bulk and surface magnetisations change continuously. 
The mechanism for this is unclear to us. One possibility is of course that the whole 
phenomenon is merely an artefact of our approximations. However, the fact that both 
the MKRG and the TTC RG yield consistent estimates for the critical angle a** seems 
to disfavour this explanation. Furthermore, we have also performed the MKRG calcula- 
tion with a finite rescaling factor for the q-state Potts model, resulting in essentially 
the same picture. On the other hand, the MKRG and mc RG are similar in spirit; both 
methods are essentially decimations, so they might cause the same errors. 

To investigate these interesting but minute effects experimentally appears difficult 
at present, but maybe the first-order transition at an opening angle of 300" is accessible 
to a Monte Carlo treatment. Since we have found that a** grows with q for the q-state 
Potts model, the first-order transition, if it exists, will probably be easiest to find for 
q = 1 (percolation). Whether a magnetic perturbation is relevant below a* at the 
ordinary transition is probably harder to test. There is no simple lattice with a < 60" 
on which to perform an experiment. Perhaps an Ising model with next-nearest- 
neighbour interactions could be used to investigate the case of a = 45". 
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